盾构机的刀具由于掘进磨损和承受掘进压力的作用,属于盾构机施工中的易损易耗件,所以应根据施工刀具的使用性能和磨损规律,结合刀具的受力情况和金相分析,总结刀具的失效原因,研制出盾构机的组成配件耐磨堆焊工艺,符合盾构机的耐磨复合板。
从盾构机刀具磨损情况来看,只需要对磨损的刀盘本体和刀具进行焊接修复和更换,即可保证盾构机正常进行下阶段的掘进施工。盾构修复的原则是保证修复后的刀具本体性能不低于原设计制造的水平,保证更换的刀具与出厂配备的刀具性能相匹配。
所以对盾构刀具本体外缘侧板环面采用埋弧堆焊的方式,首先填平一圈凹槽,然后堆焊整个侧板环面,在环面上形成一圈耐磨层,使得刀具本体直径恢复到出厂时的 6240 mm。
刀具外周边缘的倒角磨损采用加焊一圈耐磨钢板的方式对其进行恢复补强。钢圈面与刀盘本体面平齐 ,钢圈与刀具本体焊接采用二氧化碳保护焊,用埋弧堆焊把钢圈与刀具面板之间的缝隙和钢圈与刀具外缘侧板环面之间的凹槽填平。钢圈表面采用二氧化碳保护焊堆焊栅格状的耐磨堆焊层。
金海金属材料(湖北省分公司)是专业生产各种【GR15轴承专用管】等专业性的企业。 经过数年来的不懈努力,厂家拥有了强大的【GR15轴承专用管】生产开发技术队伍,并以优质的【GR15轴承专用管】产品和诚信的服务赢得了用户的好评,在国内众多【GR15轴承专用管】中脱颖而出。
复合耐磨钢板可以通过激光加工成形,但在这过程中还是会有很多因素会影响复合耐磨板城激光成形的效果,包括输入的激光能量、弯曲件的几何尺寸和材料的性能等。它们之间存在密切的关系。
在复合耐磨钢板的激光弯曲中,能量效应可用材料吸收的能量密度和吸收该能量所用的时间来表示;而能量密度又取决于材料对激光的吸收系数、激光输出功率及相对于弯曲件表面的焦距。实验证明,在输入总能量一定的前提下,大能量密度的输入、短时间的加热有利于增加复合耐磨板的弯曲角。
复合耐磨钢板的热物性和力学性能对激光弯曲的影响是较为复杂的,主要将涉及到材料的热膨胀系数、比热容系数、热扩散系数、屈服极限、弹性模量和硬化指数等参数。在同样的工艺条件下,复合耐磨板的比热和热导率越大,则成形工程中的温度梯度不明显,产生的弯曲角也越小。
另外,影响复合耐磨钢板激光弯曲角的几何尺寸因素还有弯曲件的宽度和复合耐磨板材厚度。在特定的工艺条件下,厚度的影响主要体现在弯曲角度上,厚度越大,所获得的弯曲角越小。但是当厚度超过某一极限值时,复合耐磨钢板料将不产生任何塑性弯曲。
耐磨钢板使用大型中板轧机和热连轧机生产,因此生产效率高,供货速度快。产品幅面大,厚度自由组合。不锈钢覆层厚度0.5mm以上均能生产。由于受轧钢压缩比的限制,热轧生产尚不能生产厚度50mm以上的复合钢板,也不方便生产各种小批量、圆形等特殊形状的复合板。热轧复合板的优势6、8、10mm的薄规格复合板。在热连轧条件下,能够生产复合卷板,降低生产成本,满足更多的用户需求。
在当前技术条件下,热轧工艺不能直接生产钛、铜、铝等有色金属复合板。综上所述,两种迥然不同生产工艺各具特点,同时存在和发展,满足不同用户的千差万别的需求。
耐磨复合板生产制作过程中还采用优异的热硫化工艺,将增韧耐磨陶瓷和橡胶硫化在一起,构成方形橡胶复合体,在依靠焊接或者高强度粘结剂黏贴(二合一)方式固定在设备的防护面上,形成坚固且有缓冲力的防磨层。
它结合了陶瓷的高硬度和橡胶的高缓冲及抗疲劳性能方面的优点,可以很好地解决大块物料输送过程中的设备防磨问题。橡胶的加入,除具有良好的抗磨损和防腐蚀作用外,也能防止因物料聚集造成停产和降低噪声。
耐磨复合板主要应用于火力发电厂的输煤、排灰系统及冶金钢铁业的输料、配料料仓、料斗等设备,可以解决因物料落差大,冲击力强,导致配料输送系统使用寿命低的问题;同时,橡胶复合衬板能扭曲、划割,适应于各种异型设备的安装。
耐磨复合板兼备了陶瓷的高耐磨性和橡胶的抗冲击性,适用于物料输送系统设备的防磨。如落煤斗、落煤管、球磨机进出口管等。还可适用于火力发电厂的输煤系统及冶金、钢铁系统的烧结厂的输料、配料系统的料斗、料仓等落差高、冲击大的部位上。通过改变橡胶的配方,可以获得具备特殊性能的耐磨陶瓷衬板,用于不同环境和工况的设备防磨。